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Abstract—We derive the necking condition in isothermal melt spinning employing the model of con-
vected Maxwell fluids with strain-rate dependent material relaxation time. It is found that necking is possible
when the extensional viscosity is strain-thinning (strain-sofiening), and impossible when the extensional vis-
cosity is strain-thickening (strain-hardening). Th:s finding then immediately reveals the correspondence be-
tween the spinning process and entrance flow (contraction flow), as several recent articles show that vortex is
formed in the entrance flow when the extensional viscosily is strain-thickening. Thus necking in spinning
corresponds to no vortex in entrance flow, whereas no necking in spin ning to vortex in entrance flow, for the
flow mechanism of the both situations is the extensicnal flow whose behavior is determined by the exten-

sional viscosily.

INTRODUCTION

Solid samples show necking phenomenon when
the materials possess multi-valued stress-strain curves
and the applied stress is greater than the material's
critical necking stress as discussed by many people
(e.g.,, Vincent(1] and Wada [2]). In the threadline of
melt spinning, similar necking phenomer.a also have
been observed and discussed by Ziabicki (3], Kase [4],
Kikutani [6] and Maeda [5].

However, to date there has not been an in-depth
theoretical study about this necking in the spinning
threadline, as to how and why such phenomena oc-
cur, ie, the necking conditions and rheological
interpretation. In this study, we hence derive the neck-
ing condition for isothermal melt spinning using the
simple governing equations of the system, which in-
cludes the model of convected Maxwell fluids with
White's strain-rate dependent material relaxation time.
Thus obtained results also reveal that depending on
the value of the model parameter, “a" (strain-rate de-
pendency of the material relaxation time), “necking”
can occur in the threadline, manifested as the discon-
tinuity of the threadline velocity (equivalently, the dis-
continuity of the threadline cross-sectional area).

Along with the necking condition, we derive the
extensional viscosity as a function of extensional
strain-rate, which provides a basic ground for the
rheclogical understanding of the phenomenon. The
behavior of this extensional viscosity is compared with
that in entrance flow, as related to the formation of
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vortex in entrance flow. Namely, the fact that strain-
thickening fluids generally exhibit vortex and strain-
thinning fluids do not, can be interpreted as an ev-
idence that the vortex phenomenon and the necking
phenomenon are probably governed by the same
kinematical mechanism. In other words, the fluids
having larger “a” values and thus strain-thinning ex-
tensional viscosity, exhibit necking in spinning and no
vortex in entrance flow, whereas the fluids having
smaller “a” values and strain-thickening extensional
viscosity, no necking in spinning and vortex in en-
trance flow.

The dichotorny of fluids by these two different
types, is further discussed in terms of different be-
havior patterns in other flow situations.

DERIVATION OF THE NECKING CONDITION
IN ISOTHERMAL MELT SPINNING

We begin with the same governing equations of iso-
thermal spinning as those appeared in earlier articles
{eg., Hyun (7], Hyun & Ballman [8], and Hyun [9)).
The same assumptions are also adopted here. 1j The
secondary forces such as inertia, surface tension, air
drag, and gravity are neglected. 2) The origin of the
coordinate system starts at the die swell region. 3)
The velocity distribution across the threadline cross-
section is uniform. 4) We consider stress, velocity and
S0 on in the axial direction only.

Then the one-dimensional model of isothermal
melt spinning is as follows.
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Continuity equation:
(oA 9 Av)y
ot H‘ ox )=

Equation of motion:

a
-X(~A0Jt =0 (2)

Constitutive equation {convected Maxwell fluids):
ov 2 3)
t
Strain-rate dependent mateiral relaxation time (Ide
& White [10]):

A=A/ [1+av3a,(av/ox),) (4)

where “a” is the material parameter representing the
degree of the strain-rate dependency of the material
relaxation time, A .
The steady-state solution of the above equations {as
shown in Hyun [9]) is, from Eqns. (1) and (2),
Av=Q = constant = steady-state throughput
Ao=F=constant = steady-state threadline tension
force and from Eqns. (3) and (4),

: Q0 i oV
0+/\[V[\&)1—20[~__a—) ]—ZG/\(

%)w—“—[v(g;(gv)
1+ad3A, (—)l X
2 LANN
ZKQ J/ )J
:_2G<5;)‘_~A" , (5)
1‘*8‘/3)\0(%)1

and (9v/ox),= dv/dx at steady state.
Simplifying the above equation, we get

v+ {dv/dx) [@¥3 A.v— Av —~2G A, (Q/F))=0(6)
and

(dv/dx) =v/{A(K+v (1-aV3) ]}, (7
where

K =(2GQ)/F = a reciprocal tension force. (3)

Integrating Eqn. (7) from the spinneret (x=
v=v_,) to the position of x, v, we obtain

x= A Kln /v, +A,1-ay3) v=v,) (9)

And the expression for K can be obtained from Eqn.
(9) by using the boundary condition at the take-up,

i.e., at
x=L,v=v,=1v, 10
where
r=draw —down ratio= v /v,=A,/A,. 1
—_ — Vv _
KoLz Aoll=adBlver=1)

Aolnr

Voll=A,{(1-av3) t— 1)

Aolnr
v, (1R -1
Aolnr (12)
where
o= (Aovo) /L, B=4,@V3-1). 13

We notice here that the reciprocal force K has the
same dimension as velocity, v,.

Upon substitution of Eqn. (12) into Eqn. (9), we get
X= AV, l+A80~1))In
av3iv,v/v.~1)
or
x/L=1{1+8G—-1)/Inr} lng-g{&-1) (149
where
E=v /v, {15

Eqn. (14) is the implicit expression of the thread-
line velocity, v (or ¢),in terms of the distance from the
spinneret, x, i.e., Eulerian expression of v. The La-
grangian expression of v, i.e., in terms of the fluid ele-
ment traveling time from the spinneret, , can be read-
ily calculated as follows. From Eqn. (7}, we get

dx/v=1{A,K+vl-av3))/viidv 16

and so

(v/ve/ (Aolnr)+A,(1—

_ [Fdx_ [PA.K+v{1-ay3))
r:£7_./ e dv

= (A K/l =-ve/V)+A.(1-a¥3)In v/v,) U7

The substitution of Eqn. (12) into Eqn. (17) yields
= (Ao/Vo) 1=V, )V, 14+8(~1))/ (X lnr)
+A,(1—ay3)in (v/v,)
The dimensionless Lagrangian time becomes as fol-
lows using Eqn. (13).

= v./L=1{1-gir - 1)} /Inrt 1-1/¢)

— /9][1 5 [18)

Eqn. (18) shows the implicit expression of the
threadline velocity, v (or £), in terms of the fluid trav-
eling time from the spinneret, i.e., Lagrangian expres-
sion [See Hyun & Ballman [8] for the case of constant
relaxation time, i.e., a= 0 for Eqn. (4)}.

Now we proceed to find the necking condition in
the threadline from Eqn. (14) [Egn. {18) could be used,
but it is easy here to use the Eulerian expression to
find the necking (discontinuity in velocity and cross-
sectional area)]. As shown in Eqn. (14), g and r are the

parameters which are involved in finding the necking
phenomenon. Specifically, as shown by the case (3)
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20 t

Fig. 1. Eulerian plots of dimensionless threadline
velocity for the three cases shown in (23).

curve in Fig. 1, if the value of £=v/v, at the position of
the maximum X/L is less than r (or equivalently, the
curve of ¢é=v/v, has an excursion beyond the point of
x/L=1), then there are always multiple (double) values
of £=v/v, at x/L=1 because of the fixed boundary
condition at the take-up as shown by Egn. (10).

Hence at the point of maximum value of x/L, we
have

dix/L:/dé=0={1+ga-11)/Inr (1/&: -8

or
£=1+80-1}/Blnr) (19
Therefore, the necking condition is
N+ -1)./(Blnr)1<r 20

We can further rewrite the above condition in a
simpler form by defining the critical value of g, g, at
the onset point of the multiple values of ¢(discontinui-
ty of £) at the take-up.

P14+ ir=111/ B lnrjt=r,
or

B.=1/(ridnr—1)+1) @l
Then the necking condition of Eqn. (20) becomes
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Fig. 2. Necking condition curve and the three cases.

B>Bcir.=1/rInr-1;+1) (22)
As seen in Fig. 2, 3, is always positive. And so if 2 <0
li.e.,a<1/¥'3 from Eqn. (13)], the necking condition of
Eqn. (22) is never met and thus there is no necking at
all. Accordingly, necking is possible only when 8>0
(i.e.,a>143) and Eqn. (22) is satisfied. This means that
if the value of g is above the curve of (1) as shown
in Fig. 2, there occurs necking, whereas if the point of
B lies below the curve, no necking results.

In order to demonstrate the situation, we consider
three representative cases throughout this study. The
same value of r and thus the same #,(r) value are used
for the three cases while different values for the ma-
terial parameter “a” and for the dimensionless relaxa-
tion time, A,=A_v,/L are used.

caseild I =20 8.=0. 0244,
a=0.3 e, a<IA3=0.5771, 1,=0.01,
A= —10.0048
20. 8.=0. 0244,
a=1.0ue,a>1//3), 1,=0.01,
£=0.00732
case (3} 1 r =20, £.=0.0244,
a=10fe,a>1/43), 1,=0.1,
A=0.0732 23
As explained above, case (1) doesn't exhibit neck-

ing because Bis negative (equivalently a<14/3) and so
the necking condition, Eqn. (22) is not satisfied. Case

casei2j i r

e ————— e
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(2) also exhibits no necking, because although g is
positive {a>14/3), it still is smaller than g, and so Eqn.
{22) is not satisfied. Case (3) does exhibit necking
because Eqn. (22) is satisfied. Figs. 1 and 2 show these
three cases.

Before moving to the next section of extensional
viscosity, we compare the necking condition of mell
spinning derived in this section with the conventional
necking of solids already mentioned in the Introduc-
tion of this article.

There are two conditions for the necking of solids,
1) the material should possess a multi-valued stress-
strain curve (i.e., multiple different strain values exist
for a single stress) for a certain region of the stress, and
2) the applied stress is greater than the material
critical necking stress which depends on both the
material characteristics and processing conditions.
In parallel with these, for the necking in spinning as
derived so far, we can say that a>l/y3 or>0 cor-
responds to the first condition above and Eqn. (22) to
the second condition. While the first correspondence
is easily understood, the second correspondence re-
quires the following illustration.

Combining Eqns. (5), (8), (12), and (13), we get

o=F/A

2Gv/K=112GAonr)/(1+8c — 1)1t (v/v,)

C2GAInr /@3- 1 I+ -1 1) (v/v,)
(4

Il

i

Then the applied stress at the take-up becomes
o= 2G g/ Yavd-1) (1+8 - 1)t
=(positive constant) {1/ _(1/g8) + - 1)1+ 29

for given “a”, r, and G. The critical necking stress
becomes

o.= G nrirg. )/ tiav3-1) (1+8, r— 1))}
= (positive constant) {1/{(1/8.) + @ —1;)t (6
Therefore, the necking condition Eqn. (22) leads to

0> O, 27

i.e.. the applied stress>the necking stress, thus prov-
ing the second correspondence betweer necking of
solids and necking in spinning.

Finally, we also can find the necking ratio at the

take-up as follows.
necking ratio=r1/ (v /Vol z 1o (28)

For example, the case (3) which exhibits necking at

the take-up, shows that
necking ratio ~20/5.15=23.883

0 0.5 1.0
X/L
Fig. 3. Eulerian plots of dimensionless extensional
strain-rate for the three cases.

DERIVATION OF THE EXTENSIONAL
VISCOSITY IN ISOTHERMAL SPINNING

First we need the expression of strain-rate, ¢, in
spinning because the extensional viscosity is defined
as the ratio of stress to strain-rate. Combining Eqns. (7)
and (12), we get

e=dv/dx
=v/ 1A, v 14 Bur~111/ A Inr )t +v il ~ay3) )
=1/ LUHAr -1/ vinr = A, ad3- 11 @9

The dimensionless strain-rate, £, is then

i=¢el/v,
=1/4{{1+Biur—=11)/Inri (v,/v) - Aolay3 -1
=1/(4(1-+8 0~ 1) /Inri (1/€)— &) (30)

where 1,, 8, and § are given by Egns. (13) and (15).
Next, the stress expression is already given by Eqn.
(24), and thus the dimensionless stress becomes
=0/ 2G)=A,(nr)&/(1+Bir—1)]
=g0nr) ¢/ 1@/3~1) (1440 - 1)} 31
Finally the dimensionless extensional viscosity is
then obtained from Eqns. (30) and (31).
Fe=a/é={Aonr; &/{1+8uw—1/]}
(+pgr—11/Inrt (1/6)-8) G2

Korean J. Ch. E. (Vol. 6, No. 3)
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Fig. 4. Eulerian plots of dimensionless threadline
stress for the three cases.

The above expression is further rewritten as follows.
From Eqgn. (30) we get

E=(1+Aur—1})/{nr [{1/6 4 52 33
Substitution of Eqn. (33) into Egn. (32) yields

Now we obtain for given values of £, the values of
the dimensionless strain-rate, ¢, dimensionless stress,
¢, and dimensionless extensional viscosity, 7,, for the
same three cases shown in Eqn. (23) using Egns. (30),
(31), and (32) [or (34)], respectively. Then we plot them
against the distance from the spinneret using Eqn.
(14), i.e., Eulerian plots, and the results are shown in
Figs. 3,4, and 5. As we might expect from the velocity
profiles in Fig. 1, the strain-rate and stress increase
with the distance in isothermal spinning as Figs. 3 and
4 show.

However, the extensional viscosity displays dif-
ferent behavior as shown in Fig. 5, i.e., it increases for
case (1) where a <1/y'3 (or < 0) whereas it decreases
for cases (2) and (3) where a>>1/¥3(or £>0). In order
to better understand this dichotomy of the cases de-
pending upon the value of “a”, this time we plot the
same extensional viscosity against the strain-rate and

the results are shown in Fig. 6.
The extensional viscosity exhibits strain-thickening

(hardening) behavior for the spinning of a <1 V3 fluids,

July, 1989
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Fig. 5. Eulerian plots of dimensionless extensional
viscosity for the three cases.

10-2F . —

] 10 102

Fig. 6. Dimensionless extensional viscosity vs. di-
mensionless extensional strain-rate or the
three cases.

and strain-thinning (softening) behavior for the spinn-
ing of a>1//3 fluids. This is a very important finding,
the significance of which will be further discussed in
the next section in connection with other flow situa-
tions.

We can easily ascertain the above strain-rate depen-
dency of the extensional viscosity from Eqn. (34) as
follows. The slope of the curves in Fig. 6 is obtained
below.
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Dne/dé =1~y — g =17/ 10 /8e 4158
== Ao LERUULBE 11 LB,
= — positive constant ; (1/8; 350

Thus the slope becomes positive (strain-hardening},
if <0 [as in case (1) curve], and negative (strain-
softening), if >01{as in cases (2) and {3) curves].

DISCUSSION

In the previous sections, we have derived the neck-
ing condition for isothermal spinning, which directly
corresponds to the necking condition of solids. We
also have found that the extensional viscosity be-
comes strain-thickening (hardening) or strain-thinning
(softening) depending upon the value of “a” (the
material parameter representing the degree of the
strain-rate dependency of the material relaxation time).
Here we further point out that the dichotomy of fluids
determined by “"a" governs other extensional flow
situations as well.

First, we show that A ,é=dimensionless strain-rate
(different from the other dimensionless strain-rate,
£)=a Deborah number has a maximum value for
a<l1//'3 fluids and no maximum for a>1//'3 fluids. From
Eqns. (7) and (29), we find that

AKe 2w 1-av3é=v, or

v=aKer s 1 Agay3- Dl i36)
Since the numerator is always positive in spinning, the
denominator should be positive to make v positive.
Hence, the fluids having a>1//3 set no condition on
A,¢é, whereas the fluids having a<1/y3 yield the max-
imum value of A ¢ as follows.

Apélmar=1/71—2ay3" 30

Thus we have found that in the constant force exten-
sion (i.e., spinning processes}, there exists the max-
imurm extension rate for strain-hardening fluids while
no maximum extension rate exists for strain-softening
fluids. Denn and Marrucci [11] derived the similar
results for constant strain-rate extension. Ide and
White [10] interpreted these as cohesive failure mode
and ductile failure mode (necking), respectively.

Following the similar approach, we can find the
maximum extension (i.e., the maximum draw-down
ratio. 1) for strain-hardening fluids and no such max-
imum value of r for strain-softening fluids as shown
below. From Egn. (12), we have

K=v,1

Tr—1:3/Alnt;

cBr=1: /ialnri=v, 1A, av3 -1

While the strain-softening (a>14'3) fluids always make

K positive and so no condition on r, the strain-
hardening (a<1#'3) fluids make K positive only when r
is smaller than r,,, given by

Tmax=1+1/1 A, (1-ay31] i35,
The case of a=0 (constant relaxation time) was
reported by Hyun & Ballman [8] for the result of Eqn.
{37) and Hyun [7] for the result of Eqn. (38).

Secondly, the finding in this study that the exten-
sional viscosity can become either strain-hardening or
strain-softening has already been observed experimen-
tally by Chen et al. [12], Kanai & White [13], Tsou &
Bogue [14] and others using LDPE, HDPE, etc. in spin-
ning and tubular film blowing experiments. QOur
theoretically derived results of the phenomenon and
the necking conditions here corroborate their data fair-
ly well. The theoretical results by Ide & White [10] and
Minoshima & White [15] about the different tailure
modes of the various polymer melts [i.e., necking
(ductile failure mode) and no necking (cohesive failure
mode)] also render good agreerent with our results.

Thirdly, the respective correspondence between the
necking (or no necking) in spinning and no vortex (or
vortex) in entrance flow deserves some discussion.
Recently, Baird et al. [16] and Binding [17] and others
have found that the vortex formation in entrance flow
(contraction flow} is related to the strain-hardening
behavior of the extensional viscosity.

As shown in Fig. &, it is intuively clear that if the
fluid can perform necking in extensional flow, there is

a=1.0>1/y3 Fluids

Necki Draw
ocking Resonance
102+ | No Nc

Il Yes No

m No Yes

L 1

10-2 10 1
S A
L.
Fig. 7. Necking curve and draw resonance curve in

spinning of a strain-softening fluid: case (3).

AuE
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(a) (b)

Fig. 8. Schematic diagram of entrance flow, (a) vor-
tex formed (b) no vortex.

no vortex in entrance flow [Fig. 8(b)], while if the fluid
exhibits no necking in extensional flow, then vortex is
inevitable [Fig. 8(a)], because smooth extensional flow
prefiles (so-called wine glass-shaped profiles) are form-
ed as a stress relieving mechanism. Hence, we can say
that necking in spinning and vortex in entrance flow
are governed by basically the same extensional flow

Table 1. Comparison of the two fluids

mechanism which is determined by the extension rate
dependency of the extensional viscosity, which, in
turn, is decided by the dichotomy of the fluids accord-
ing to the material parameter “a” in this study.

Fourthly, as reported by Hyun [9], the draw
resonance phenomenon in spinning also displays
fundamentally different behavior depending upon the
value of “a”. Since strain-softening (a>1#"3) fluids can
exhibit necking if the necking condition of Eqn. (22)
is satisfied, we plot the necking curve and draw res-
onance curve in the same figure for the case (3) in Fig.
7. There are four different regions as to whether neck-
ing and draw resonance can occur. While some experi-
mental data exist for some regions, there are not yet
complete experimental results to explain fully the
whole region of Fig. 7.

CONCLUSION

The crux of the results of this study is that the di-
chotomy of fluids reveals 1) necking in spinning, 2)
vortex in entrance flow, 3) draw resonance in spinn-
ing, and 4) failure modes of extension of solids, are all

Categories Fluids 1

Fluids It

Strain-rate dependence of the small, a3

material relaxation time, “a

large, a>1//3

Necking in spinning

Draw resonance in spinning

Strain-rate dependence of the
extensional viscosity

Vortex in entrance flow

Failure mode of solid extension

Effect of A,= Af'ﬁ on necking

Effect of 7, = 51‘/0 on draw
resonance

Effect of r= draw-down ratio on
necking

Effect of r on draw resonance

Multiplicity in capillary {low rate

Typical materials

Maximum dimensionless
extension rate, { A, € bmax

Maximum draw-down ratic, r,,,,

necking impossible

r. is larger than 20.21 (Newtonian
rJ and increases with i,

strain-thickening (hardening)

vortex formed
cohesive failure mode
no effect (no necking)

stabilizing (or reduce draw resonance)
no effect (no necking)

increase draw resonance

no multiplicity

LOPE

141-al3)

14+ 1/{3,(1-a/3)]

necking possible if necking condition
of Eqn. (22) satisfied

r. is smaller than 20. 21 (Newtonian
ro) and decreases with A,

strain-thinning {softening)

no voriex

ductile failure mode (necking)
more necking

destabilizing (or increase draw
resonance)

more necking

increase draw resonance
multiplicity
HDPE

Doesn't exist

Doesn’t exist

July, 1989
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related to each other and are governed by the behavior
of the same extensional viscosity in extensional flow.
Therefore, the conclusion can be best summarized by
Table 1 below where the comparison of two different
fluids in different flow situations, is made. What we
have shown in this article is thus that using a simple
model which is amenable to analytical calculation, the
fundamental physics involved in extensional flow, is
revealed and interpreted. There are, of course, many
tasks left in studying extensional flow, e.g., instead of a
single material relaxation time, multiple relaxation
times, and more accurate constitutive equation, etc.,
which obviously require extensive computer simula-
tion efforts.

NOMENCLATURE

threadline cross-sectional area

material parameter representing the strain-rate
dependence of the material relaxation time
threadline tension force

material modulus

threadline reciprocal force, K=2 G Q/F

. distance from spinneret to take-up

threadline throughput (flow rate), Q=Av

: draw-down ratio, r=v,/v,=A JA,

critical r at the onset of draw resonance

time

threadline velocity

threadline velocity at spinneret (x=0)

v, : threadline velocity at take-up (x=L)

x : distance from spinneret

g : dimensionless term, =1, ay3- 1)

8. : value of gat critical necking situation

¢ . extensional strain-rate

dimensionless extensional strain-rate, é=el/v,
Te : extensional viscosity, 7.=o/¢

7. . dimensionless extensional viscosity, 7.=5/¢

A . material relaxation time

A, @ constant materials relaxation time

A, : dimensionless material relaxation time, A,= A,
v,/L

&

ST O xRO™M

< < -

o

e

=Y

9
o

~NE N Qo

. dimensionless threadline velocity, ¢ =v/v,

. threadline stress

. critical necking stress

: dimensionless threadline stress, 5=¢ /20

. fluid traveling time from spinneret

. dimensionless fluid traveling time from spin-

neret, 7=t v,/L
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